- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0004100001000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Camilleri, Romain (6)
-
Jamieson, Kevin (6)
-
Jain, Lalit (5)
-
Fazel, Maryam (3)
-
Xiong, Zhihan (3)
-
Katz-Samuels, Julian (1)
-
Mason, Blake (1)
-
Morgenstern, Jamie (1)
-
Mukherjee, Subhojyoti (1)
-
Nowak, Robert (1)
-
Wagenmaker, Andrew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xiong, Zhihan; Camilleri, Romain; Fazel, Maryam; Jain, Lalit; Jamieson, Kevin (, International Conference on Artificial Intelligence and Statistics)
-
Mason, Blake; Jain, Lalit; Mukherjee, Subhojyoti; Camilleri, Romain; Jamieson, Kevin; Nowak, Robert (, International Conference on Artificial Intelligence and Statistics)The level set estimation problem seeks to find all points in a domain where the value of an unknown function 𝑓:→ℝ exceeds a threshold 𝛼 . The estimation is based on noisy function evaluations that may be acquired at sequentially and adaptively chosen locations in . The threshold value 𝛼 can either be explicit and provided a priori, or implicit and defined relative to the optimal function value, i.e. 𝛼=(1−𝜖)𝑓(𝐱∗) for a given 𝜖>0 where 𝑓(𝐱∗) is the maximal function value and is unknown. In this work we provide a new approach to the level set estimation problem by relating it to recent adaptive experimental design methods for linear bandits in the Reproducing Kernel Hilbert Space (RKHS) setting. We assume that 𝑓 can be approximated by a function in the RKHS up to an unknown misspecification and provide novel algorithms for both the implicit and explicit cases in this setting with strong theoretical guarantees. Moreover, in the linear (kernel) setting, we show that our bounds are nearly optimal, namely, our upper bounds match existing lower bounds for threshold linear bandits. To our knowledge this work provides the first instance-dependent, non-asymptotic upper bounds on sample complexity of level-set estimation that match information theoretic lower bounds.more » « less
-
Camilleri, Romain; Wagenmaker, Andrew; Morgenstern, Jamie; Jain, Lalit; Jamieson, Kevin (, Advances in neural information processing systems)
-
Camilleri, Romain; Jamieson, Kevin; Katz-Samuels, Julian (, Proceedings of Machine Learning Research)
-
Camilleri, Romain; Xiong, Zhihan; Fazel, Maryam; Jain, Lalit; Jamieson, Kevin (, Advances in neural information processing systems)
An official website of the United States government

Full Text Available